In vitro selection of high-affinity DNA aptamers for streptavidin.

نویسندگان

  • Chenglong Wang
  • Guang Yang
  • Zhaofeng Luo
  • Hongmei Ding
چکیده

In this study, we developed a systematic evolution of ligands by exponential enrichment (SELEX) method using a combination of magnetic beads immobilization and flow cytometric measurement. As an example, the selection of streptavidin-specific aptamers was performed. In this protocol, the conventional SELEX procedure was optimized, first using magnetic beads for target immobilization to facilitate highly efficient separation of the binding single-stranded DNA (ssDNA) aptamers from the unbound ssDNAs, and second using flow cytometry and fluorescein labeling to monitor the enrichment. The sensitivity of flow cytometry was adequate for ssDNA quantification during the SELEX procedures. The streptavidin-specific aptamers obtained in this work can be used as tools for characterization of the occupancy of streptavidin-modified surfaces with biotinylated target molecules. The method described in the study is also generally applicable to target molecules other than streptavidin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation of highly specific aptamers via micromagnetic selection.

Aptamers are nucleic acid-based reagents that bind to target molecules with high affinity and specificity. However, methods for generating aptamers from random combinatorial libraries (e.g., systematic evolution of ligands by exponential enrichment (SELEX)) are often labor-intensive and time-consuming. Recent studies suggest that microfluidic SELEX (M-SELEX) technology can accelerate aptamer is...

متن کامل

Development of aptameric affinity ligands specific to human plasma coagulation factor VIII using SEC-SELEX

Protein specific aptamers are highly applicable affinity ligands in different fields of research and clinical applications. They have been developed against various targets, in particular, bio-macromolecules such as proteins. Among human proteins, the coagulation factors are the most attractive targets for aptamer selection and their specific aptamers had valuable characteristics in therapeutic...

متن کامل

Streptavidin aptamers: affinity tags for the study of RNAs and ribonucleoproteins.

RNA affinity tags would be very useful for the study of RNAs and ribonucleoproteins (RNPs) as a means for rapid detection, immobilization, and purification. To develop a new affinity tag, streptavidin-binding RNA ligands, termed "aptamers," were identified from a random RNA library using in vitro selection. Individual aptamers were classified into two groups based on common sequences, and repre...

متن کامل

High efficiency acetylcholinesterase immobilization on DNA aptamer modified surfaces.

We report here the in vitro selection of DNA aptamers for electric eel acetylcholinesterase (AChE). One selected aptamer sequence (R15/19) has a high affinity towards the enzyme (Kd=157±42 pM). Characterization of the aptamer showed its binding is not affected by low ionic strength (~20 mM), however significant reduction in affinity occurred at high ionic strength (~1.2 M). In addition, this ap...

متن کامل

The use of mRNA display to select high-affinity protein-binding peptides.

We report the use of "mRNA display," an in vitro selection technique, to identify peptide aptamers to a protein target. mRNA display allows for the preparation of polypeptide libraries with far greater complexity than is possible with phage display. Starting with a library of approximately 10(13) random peptides, 20 different aptamers to streptavidin were obtained, with dissociation constants a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biochimica et biophysica Sinica

دوره 41 4  شماره 

صفحات  -

تاریخ انتشار 2009